TRANSPOSITION OF ALLYLIC ALCOHOLS CONTROLLED BY THE Ph_2PO GROUP: REAGENTS FOR α -Hydroxy-diene synthesis by the horner-wittig reaction

Paul S. Brown, Andrew B. McElroy, and Stuart Warren^{*} University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW.

4-Hydroxy-2-alkenyldiphenylphosphine oxides, prepared by a phosphorus-controlled allylic rearrangement, give dianions and hence α -hydroxydienes (substituted penta-2,4-dienols) by the Horner-Wittig reaction.

Esters (2) from α -hydroxydienes (diene alcohols, substituted penta-2,4-dienols, e.g. 1) give Diels-Alder products (3) whose stereo- and regiochemistry is controlled by the intramolecular nature of the reaction.¹ We report a connective synthesis (scheme) of α -hydroxydienes from three fragments: an aldehyde or ketone, an enal, and an alkyl diphenylphosphine oxide, using the Horner-Wittig reaction in the last step.

We have used allyl phosphine oxides² and dianions (4) of hydroxyalkyl phosphine oxides³ in stereo-controlled syntheses of dienes and unsaturated alcohols by the Horner-Wittig reaction: dianions (5) of hydroxyallyl phosphine oxides were therefore good candidates for the synthesis of α -hydroxydienes (1) <u>via</u> adducts (6) with aldehydes or ketones. Addition⁴ of phosphine oxide anions to α , β -unsaturated aldehydes and ketones gives adducts⁵ (7) related to the required starting materials (9) by an allylic transposition.

Unsymmetrically substituted allylic alcohols (12) can be transposed⁶ to the isomer (15) with the more highly substituted double bond by acid catalysed rearrangement of the alcohol⁶, <u>via</u> oxidation with an acidic reagent such as PCC,⁷ or by acid-catalysed rearrangements of the esters (13).⁸ The acid-

catalysed rearrangement of alcohol and ester are thought to have the allyl cation (14) as an intermediate. 9

Scheme: Synthesis of α -hydroxydienes by the Horner-Wittig reaction

For the Ph₂PO-substituted allylic alcohols (7), direct rearrangement gave poor yields (7f, table), elimination being the main side-reaction. Oxidation with PCC gave a reasonable yield of the ketone (11) but our preferred method is the acid-catalysed rearrangement of the acetates⁸ which gives consistently good yields of rearranged acetates (8), easily hydrolysed to the alcohols (9).

The tertiary alcohols (7, $R^2=Me$) rearranged readily under these conditions whether the product is the ester of a primary (8c) or a secondary (8d,f) alcohol. More remarkably, secondary alcohols (7, $R^2=H$) also rearranged completely to (8, $R^2=H$), directed only by the Ph₂PO group: we suppose this to be a steric rather than an electronic effect. The unsubstituted compound (7a) refused to rearrange under any conditions; presumably the allyl cation intermediate is too unstable.

Compound	Yield (7)	R ¹	r ²	r ³	Method	Yield (8)	Stereo (8)	Yield (9)
(7a)	85%	н	н	Н	A,B	0%a	_	-
(7b)	88%	н	н	Me	А	83%	E only	86%
(7c)	80%	H	Me	H	A	90%	<u>E:</u> <u>Z</u> 1:1	76ቄ <u>E</u> 62ቄ Z
(7đ)	84%	н	Me	Me	Α	95%	<u>E:</u> Z 1:1	90% <u>E</u> 80% Z
(7e)	988	n-C ₅ H ₁₁	H	Me	А	98%	E only ^b	86% E
(7f)	65%	$n - C_5 H_{11}$	Me	Me	А	778	E only ^b	100% E
		5 11			В	16%	Ē	16% E
					С	608 ^C	E:Z 7:1 ^C	

Table: Allylic Rearrangement of Alcohols (7)

Method A: Ac_2O , AcOH, cat. TsOH, O^OC , 15 min $(R^2 \neq H)$ or room temperature, 24 h., $(R^2=H)$. Method B: HCl, H₂O, dioxan, room temperature, 15 mins. Method C: PCC, CH_2Cl_2 , room temperature, 3 h.

^a Method A gave the unrearranged acetate.
^b As a mixture of diastereoisomers (1:1 for 8e, 1:1.7 for 8f).
^c Ketone (11)

The geometry of the double bond in the products (8) is determined by the number of substituents. With $R^1 \neq H$ only the <u>E</u> product is formed (8e,f). With $R^1 = R^2 = H$, again only the <u>E</u> product is formed (8b), but if $R^1 = H$ and $R^2 = Me$, a 1:1 mixture of <u>E</u> and <u>Z</u> isomers is formed (8c,d). The geometrical isomers of the acetates (8) separate easily on silica chromatography. Diastereoisomeric mixtures result in all cases where R^1 and $R^3 \neq H$ whose composition does not reflect the diastereoisomeric composition of the starting alcohol (7), as expected for a mechanism involving an allyl cation?

Dianions from the <u>E</u> alcohols (9) were formed on treatment with two equivalents of BuLi at -78° C. These combined with aldehydes or ketones to give diols (e.g. 16, 18), the latter as a mixture of diastereoisomers, but giving a single olefin (17, 19) on elimination. The geometry of the double bond in (9) is unchanged during these Horner-Wittig reactions. We had hoped to control the geometry of the second double bond in the diene alcohols by making the Horner-Wittig reaction stereoselective. However, addition of EtCHO to the dianion of (9c) gave a 1:1 (NMR) mixture of diastereoisomers (20, R=H) which could not be separated by chromatography, even by HPLC. The bis acetate (20, R=Ac) and the bis silyl ether (20, R=t-BuMe_2Si) were no better. The unsubstituted compound (9a, $R^1=R^2=R^3=H$) has been used in a one-step Horner-Wittig reaction giving low yields.¹⁰ Dianions of <u>Z</u> alcohols (9c) and (9d) did not add to aldehydes or ketones, perhaps because of the basic <u>cis</u> oxyanion. Fortunately it is the <u>E</u>-diene alcohols e.g. (17) or (19) which are useful in Diels-Alder reactions.¹

20

We thank the SERC for grants, Glaxo Group Research for a CASE award (to ABMcE), and Drs Barry Price and Eric Collington for many helpful discussions.

References

- G. Brieger and J. N. Bennett, <u>Chem. Rev.</u>, 1980, 80, 63; B. Nader, R. W. Franck, and S. M. Weinreb, <u>J. Am. Chem. Soc.</u>, 1980, 102, 1153; J. D. White and B. G. Sheldon, <u>J. Org. Chem.</u>, 1981, 46, 2273.
- 2. A. H. Davidson and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1976, 639.
- A. D. Buss, N. Greeves, D. Levin, P.N. Wallace, and S. Warren, <u>Tetra-hedron Lett.</u>, 1984, 25, 357.
- Michael addition is not a problem in addition of phosphine oxide anions to unsaturated aldehydes or ketones, ref. 6, though some Michael addition occurs with unsaturated esters.
- A. H. Davidson, C. Earnshaw, J. I. Grayson, and S. Warren, <u>J. Chem. Soc.</u>, <u>Perkin Trans. 1</u>, 1977, 1452; L. Horner, H. Hofmann, W. Klink, H. Ertel, and V. G. Toscano, <u>Chem. Ber.</u>, 1962, 95, 581; P. Blatcher, J. I. Grayson, and S. Warren, <u>J. Chem. Soc.</u>, <u>Chem. Commun.</u>, 1976, 547.
- R. H. deWolfe and W. G. Young, <u>Chem. Rev.</u>, 1956, 56, 818ff., Idem., "The Chemistry of Alkenes", ed. S. Patai, Interscience, London, 1964, p.716ff.
- 7. W. G. Dauben and D. M. Michno, <u>J. Org. Chem.</u>, 1977, **42**, 682.
- 8. J. H. Babler, D. O. Olsen, and W. H. Arnold, <u>J. Org. Chem.</u>, 1974, **39**, 1656.
- H. L. Goering, J. T. Doi, and K. D. McMichael, <u>J. Am. Chem. Soc.</u>, 1964, 86, 1951.
- E. Vedejs, J. B. Campbell, R. C. Gadwood, J. D. Rodgers, K. L. Spear, and Y. Watanabe, <u>J. Org. Chem.</u>, 1982, 47, 1534.

(Received in UK 12 October 1984)